网站首页 > 基础教程 正文
π是一个无数人追随的真正的神奇数字。我不是很清楚一个永远重复的无理数的迷人之处。在我看来,我乐于计算π,也就是计算π的值。因为π是一个无理数,它是无限的。这就意味着任何对π的计算都仅仅是个近似值。如果你计算100位,我可以计算101位并且更精确。迄今为止,有些人已经选拔出超级计算机来试图计算最精确的π。一些极值包括 计算π的5亿位。你甚至能从网上找到包含 π的一百亿位的文本文件(注意啦!下载这个文件可能得花一会儿时间,并且没法用你平时使用的记事本应用程序打开。)。对于我而言,如何用几行简单的Python来计算π才是我的兴趣所在。
你总是可以 使用 math.pi 变量的 。它被 包含在 标准库中, 在你试图自己 计算它之前,你应该去使用它 。 事实上 , 我们将 用它来计算 精度 。作为 开始, 让我们看 一个 非常直截了当的 计算Pi的 方法 。像往常一样,我将使用Python 2.7,同样的想法和代码可能应用于不同的版本。我们将要使用的大部分算法来自 Pi WikiPedia page并加以实现。让我们看看下面的代码:
importsys
importmath
defmain(argv):
iflen(argv) !=1:
sys.exit('Usage: calc_pi.py <n>')
print'\nComputing Pi v.01\n'
a=1.0
b=1.0/math.sqrt(2)
t=1.0/4.0
p=1.0
foriinrange(int(sys.argv[1])):
at=(a+b)/2
bt=math.sqrt(a*b)
tt=t-p*(a-at)**2
pt=2*p
a=at;b=bt;t=tt;p=pt
my_pi=(a+b)**2/(4*t)
accuracy=100*(math.pi-my_pi)/my_pi
print"Pi is approximately: "+str(my_pi)
print"Accuracy with math.pi: "+str(accuracy)
if__name__=="__main__":
main(sys.argv[1:])</n>
这是个非常简单的脚本,你可以下载,运行,修改,和随意分享给别人。你能够看到类似下面的输出结果:
- 你会发现,尽管 n 大于4 ,我们逼近 Pi 精度却没有多大的提升。 我们可以猜到即使 n的值更大,同样的事情(pi的逼近精度没有提升)依旧会发生。幸运的是,有不止一种方法来揭开这个谜。使用 Python Decimal (十进制)库,我们可以就可以得到更高精度的值来逼近Pi。让我们来看看库函数是如何使用的。这个简化的版本,可以得到多于11位的数字 通常情况小Python 浮点数给出的精度。下面是Python Decimal 库中的一个例子 :
- 看到这些数字。不对! 我们输入的仅是 3.14,为什么我们得到了一些垃圾(junk)? 这是内存垃圾(memory junk)。 在坚果壳,Python给你你想要的十进制数,再加上一点点额外的值。 只要精度小于垃圾号码开始时,它不会影响任何计算只要精度小于前面的垃圾号码(junk number)开始时。 您可以指定你想要多少位数的通过设置getcontext().prec 。我们试试。
很好。 现在让我们 试着用这个 来 看看我们是否能 与我们以前的 代码 有更好的 逼近 。 现在, 我通常 是反对 使用“ from library import * ” , 但在这种情况下, 它会 使代码 看起来更漂亮 。
importsys
importmath
fromdecimalimport*
defmain(argv):
iflen(argv) !=1:
sys.exit('Usage: calc_pi.py <n>')
print'\nComputing Pi v.01\n'
a=Decimal(1.0)
b=Decimal(1.0/math.sqrt(2))
t=Decimal(1.0)/Decimal(4.0)
p=Decimal(1.0)
foriinrange(int(sys.argv[1])):
at=Decimal((a+b)/2)
bt=Decimal(math.sqrt(a*b))
tt=Decimal(t-p*(a-at)**2)
pt=Decimal(2*p)
a=at;b=bt;t=tt;p=pt
my_pi=(a+b)**2/(4*t)
accuracy=100*(Decimal(math.pi)-my_pi)/my_pi
print"Pi is approximately: "+str(my_pi)
print"Accuracy with math.pi: "+str(accuracy)
if__name__=="__main__":
main(sys.argv[1:])</n>
输出结果:
好了。我们更准确了,但看起来似乎有一些舍入。从n = 100和n = 1000,我们有相同的精度。现在怎么办?好吧,现在我们来求助于公式。到目前为止,我们计算Pi的方式是通过对几部分加在一起。我从DAN 的关于 Calculating Pi 的文章中发现一些代码。他建议我们用以下3个公式:
Bailey–Borwein–Plouffe 公式
Bellard的公式
Chudnovsky 算法
让我们从Bailey–Borwein–Plouffe 公式开始。它看起来是这个样子:
在代码中我们可以这样编写它:
import sys
import math
from decimal import *
def bbp(n):
pi=Decimal(0)
k=0
while k < n:
pi+=(Decimal(1)/(16**k))*((Decimal(4)/(8*k+1))-(Decimal(2)/(8*k+4))-(Decimal(1)/(8*k+5))-(Decimal(1)/(8*k+6)))
k+=1
return pi
def main(argv):
if len(argv) !=2:
sys.exit('Usage: BaileyBorweinPlouffe.py <prec> <n>')
getcontext().prec=(int(sys.argv[1]))
my_pi=bbp(int(sys.argv[2]))
accuracy=100*(Decimal(math.pi)-my_pi)/my_pi
print"Pi is approximately "+str(my_pi)
print"Accuracy with math.pi: "+str(accuracy)
if __name__=="__main__":
main(sys.argv[1:])</n></prec>
抛开“ 包装”的代码,BBP(N)的功能是你真正想要的。你给它越大的N和给 getcontext().prec 设置越大的值,你就会使计算越精确。让我们看看一些代码结果:
这有许多数字位。你可以看出,我们并没有比以前更准确。所以我们需要前进到下一个公式,贝拉公式,希望能获得更好的精度。它看起来像这样:
我们将只改变我们的变换公式,其余的代码将保持不变。点击这里下载Python实现的贝拉公式。让我们看一看bellards(n):
def bellard(n):
pi=Decimal(0)
k=0
while k < n:
pi+=(Decimal(-1)**k/(1024**k))*( Decimal(256)/(10*k+1)+Decimal(1)/(10*k+9)-Decimal(64)/(10*k+3)-Decimal(32)/(4*k+1)-Decimal(4)/(10*k+5)-Decimal(4)/(10*k+7)-Decimal(1)/(4*k+3))
k+=1
pi=pi*1/(2**6)
return pi
输出结果:
哦,不,我们得到的是同样的精度。好吧,让我们试试第三个公式, Chudnovsky 算法,它看起来是这个样子:
再一次,让我们看一下这个计算公式(假设我们有一个阶乘公式)。 点击这里可下载用 python 实现的 Chudnovsky 公式。
下面是程序和输出结果:
def chudnovsky(n):
pi=Decimal(0)
k=0
while k < n:
pi+=(Decimal(-1)**k)*(Decimal(factorial(6*k))/((factorial(k)**3)*(factorial(3*k)))*(13591409+545140134*k)/(640320**(3*k)))
k+=1
pi=pi*Decimal(10005).sqrt()/4270934400
pi=pi**(-1)
return pi
所以我们有了什么结论?花哨的算法不会使机器浮点世界达到更高标准。我真的很期待能有一个比我们用求和公式时所能得到的更好的精度。我猜那是过分的要求。如果你真的需要用PI,就只需使用math.pi变量了。然而,作为乐趣和测试你的计算机真的能有多快,你总是可以尝试第一个计算出Pi的百万位或者更多位是几。
更多技巧请《转发 + 关注》哦!
猜你喜欢
- 2024-11-22 Python教程:python中fact函数的用法
- 2024-11-22 Python 实现经典算法之基数排序
- 2024-11-22 python学习笔记 5.函数
- 2024-11-22 网易云大佬收藏的Python22个编程技巧,建议收藏
- 2024-11-22 Python基础编程——函数经典案例
- 2024-11-22 用golang抄袭python的排列组合
- 2024-11-22 10张动图学会python循环与递归
- 2024-11-22 一文总结30种Python的窍门和技巧,让你玩转Python
- 2024-11-22 Python基础知识总结
- 2024-11-22 理解 10 个最难的 Python 概念
- 最近发表
-
- Vue3+Bootstrap5项目初始化 vue 项目初始化
- 前端程序员不得不爱的bootstrap 前端 bom
- 保姆级软路由刷机+软路由OpenWRT入门设置,新手轻松搭建软路由
- 好东西!iOS 16.5 半越狱分屏功能,教你正确安装
- Python数据可视化Dash开源库Bootstrap之折叠列表Accordion
- 终于发布!iOS 16.5 越狱工具已发布,分屏插件有效
- 超爽!iOS 16.6.1 Bootstrap 半越狱更新,有通知
- 好玩!iOS 16.6.1 半越狱玩法,这插件真生效
- 来啦!iOS 16.6.1 nathanlr 半越狱,被迫公测体验
- iOS 17.0 Bootstrap 1.2.9 半越狱来啦!更新两点
- 标签列表
-
- gitpush (61)
- pythonif (68)
- location.href (57)
- tail-f (57)
- pythonifelse (59)
- deletesql (62)
- c++模板 (62)
- css3动画 (57)
- c#event (59)
- linuxgzip (68)
- 字符串连接 (73)
- nginx配置文件详解 (61)
- html标签 (69)
- c++初始化列表 (64)
- exec命令 (59)
- canvasfilltext (58)
- mysqlinnodbmyisam区别 (63)
- arraylistadd (66)
- node教程 (59)
- console.table (62)
- c++time_t (58)
- phpcookie (58)
- mysqldatesub函数 (63)
- window10java环境变量设置 (66)
- c++虚函数和纯虚函数的区别 (66)